Derivative-Free Optimization
نویسندگان
چکیده
In many engineering applications it is common to find optimization problems where the cost function and/or constraints require complex simulations. Though it is often, but not always, theoretically possible in these cases to extract derivative information efficiently, the associated implementation procedures are typically non-trivial and time-consuming (e.g., adjoint-based methodologies). Derivative-free (non-invasive, black-box) optimization has lately received considerable attention within the optimization community, including the establishment of solid mathematical foundations for many of the methods considered in practice. In this chapter we will describe some of the most conspicuous derivative-free optimization techniques. Our depiction will concentrate first on local optimization such as pattern search techniques, and other methods based on interpolation/approximation. Then, we will survey a number of global search methodologies, and finally give guidelines on constraint handling approaches.
منابع مشابه
A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملDerivative-Free Robust Optimization for Circuit Design
In this paper, we introduce a framework for derivative-free robust optimization based on the use of an efficient derivative-free optimization routine for mixed integer nonlinear problems. The proposed framework is employed to find a robust optimal design of a particular integrated circuit (namely a DC-DC converter commonly used in portable electronic devices). The proposed robust optimization a...
متن کاملDerivative-free optimization methods for finite minimax problems
Derivative-free optimization focuses on designing methods to solve optimization problems without the analytical knowledge of the function. In this paper we consider the problem of designing derivative-free methods for finite minimax problems: minx maxi=1,2,...N{fi(x)}. In order to solve the problem efficiently, we seek to exploit the smooth substructure within the problem. Using ideas developed...
متن کاملDerivative-Free Optimization for Oil Field Operations
A variety of optimization problems associated with oil production involve cost functions and constraints that require calls to a subsurface flow simulator. In many situations gradient information cannot be obtained efficiently, or a global search is required. This motivates the use of derivative-free (non-invasive, blackbox) optimization methods. This chapter describes the use of several deriva...
متن کاملNumerical experience with a derivative-free trust-funnel method for nonlinear optimization problems with general nonlinear constraints
A trust-funnel method is proposed for solving nonlinear optimization problems with general nonlinear constraints. It extends the one presented by Gould and Toint (Math. Prog., 122(1):155196, 2010), originally proposed for equality-constrained optimization problems only, to problems with both equality and inequality constraints and where simple bounds are also considered. As the original one, ou...
متن کاملDerivative-free optimization: a review of algorithms and comparison of software implementations
This paper addresses the solution of bound-constrained optimization problems using algorithms that require only the availability of objective function values but no derivative information. We refer to these algorithms as derivative-free algorithms. Fueled by a growing number of applications in science and engineering, the development of derivativefree optimization algorithms has long been studi...
متن کامل